FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

Effective Date: January 15, 2019
Related Policies:
6.01.06 Miscellaneous (Noncardiac, Nononcologic) Applications of Positron Emission Tomography
6.01.20 Cardiac Applications of Positron Emission Tomography Scanning
6.01.51 Interim Positron Emission Tomography Scanning in Oncology to Detect Early Response During Treatment

Oncologic Applications of Positron Emission Tomography Scanning

Description
Positron emission tomography (PET) scans are based on the use of positron-emitting radionuclide tracers coupled to organic molecules, such as glucose, ammonia, or water. The radionuclide tracers simultaneously emit 2 high-energy photons in opposite directions that can be simultaneously detected (referred to as coincidence detection) by a PET scanner, comprising multiple stationary detectors that encircle the area of interest.

The utility of PET scanning for the diagnosis, staging and restaging, and surveillance of malignancies varies by type of cancer. In general, PET scanning can distinguish benign from malignant masses in certain circumstances and improve the accuracy of staging by detecting additional disease not detected by other imaging modalities. Therefore, PET scanning for diagnosis and staging of malignancies can be considered medically necessary when specific criteria are met for specific cancers, as outlined in the policy statements. For follow-up after initial diagnosis and staging have been performed, there are a few situations in which PET can improve detection of recurrence, and lead to changes in management that improve the net health outcome.

OBJECTIVE

The objective of this evidence review is to examine whether the use of positron emission tomography for the diagnosis, staging and restaging, and/or surveillance of various carcinomas improves the net health outcome in individuals with cancer.

POLICY STATEMENT

All policy statements apply to both positron emission tomography (PET) scans and PET plus computed tomography (CT) scans, i.e., PET scans with or without PET/CT fusion.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

For the clinical situations indicated that may be considered medically necessary, this assumes that the results of the PET scan will influence treatment decisions. If the results will not influence treatment decisions, these situations would be considered not medically necessary.

Bladder Cancer
PET scanning may be considered **medically necessary** in the staging or restaging of muscle-invasive bladder cancer when CT or magnetic resonance imaging are not indicated or remained inconclusive on distant metastasis.

PET scanning is considered **investigational** for bladder tumors that have not invaded the muscle (stage <cT2).

Bone Sarcoma
PET scanning may be considered **medically necessary** in the staging or restaging of Ewing sarcoma and osteosarcoma.

PET scanning is considered **investigational** in the staging of chondrosarcoma.

Brain Cancer
PET scanning may be considered **medically necessary** in the staging or restaging of brain cancer.

Breast Cancer
PET scanning may be considered **medically necessary** in the staging or restaging of breast cancer for the following application:
- Detecting locoregional or distant recurrence or metastasis (except axillary lymph nodes) when suspicion of disease is high and other imaging is inconclusive.

PET scanning is considered **investigational** in the evaluation of breast cancer for all other applications, including but not limited to the following:
- Differential diagnosis in patients with suspicious breast lesions or an indeterminate or low suspicion finding on mammography
- Staging axillary lymph nodes.
- Predicting pathologic response to neoadjuvant therapy for locally advanced disease.

Cervical Cancer
PET scanning may be considered **medically necessary** in the initial staging of patients with locally advanced cervical cancer.

PET scanning may be considered **medically necessary** in the evaluation of known or suspected recurrence.

Colorectal Cancer
PET scanning may be considered **medically necessary** as a technique for
- Staging or restaging to detect and assess resectability of hepatic or extrahepatic metastases of colorectal cancer, and
- To evaluate a rising and persistently elevated carcinoembryonic antigen levels when standard imaging, including CT scan, is negative.

PET scanning is considered **investigational** as:
- A technique to assess the presence of scarring vs local bowel recurrence in patients with previously resected colorectal cancer.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

- A technique contributing to radiotherapy treatment planning.

Endometrial Cancer
PET scanning is considered *medically necessary* in the:
- Detection of lymph node metastases, and
- Assessment of endometrial cancer recurrence.

Esophageal Cancer
PET scanning may be considered *medically necessary* in the:
- Staging of esophageal cancer, and
- Determining response to preoperative induction therapy.
PET scanning is considered *investigational* in other aspects of the evaluation of esophageal cancer, including but not limited to the following applications:
- Detection of primary esophageal cancer.

Gastric Cancer
PET scanning may be considered *medically necessary* in the:
- Initial diagnosis and staging of gastric cancer, and
- Evaluation for recurrent gastric cancer after surgical resection, when other imaging modalities are inconclusive.

Head and Neck Cancer
PET scanning may be considered *medically necessary* in the evaluation of head and neck cancer in the
- Initial diagnosis of suspected cancer,
- Initial staging of disease, and restaging of residual or recurrent disease during follow-up, and

Lung Cancer
PET scanning may be considered *medically necessary* for any of the following applications:
- Patients with a solitary pulmonary nodule as a single scan technique (not dual-time) to distinguish between benign and malignant disease when prior CT scan and chest x-ray findings are inconclusive or discordant,
- As staging or restaging technique in those with known non-small-cell lung cancer, and
- To determine resectability for patients with a presumed solitary metastatic lesion from lung cancer.
PET scanning may be considered *medically necessary* in staging of small-cell lung cancer if limited stage is suspected based on standard imaging.
PET scanning is considered *investigational* in staging of small-cell lung cancer if extensive stage is established and in all other aspects of managing small-cell lung cancer.

Lymphoma, Including Hodgkin Disease
PET scanning may be considered *medically necessary* as a technique for staging lymphoma either during initial staging or for restaging at follow-up.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

Melanoma
PET scanning may be considered medically necessary as a technique for assessing extranodal spread of malignant melanoma at initial staging or at restaging during follow-up treatment for advanced disease (stage III or IV).
PET scanning is considered investigational in managing stage 0, I, or II melanoma.
PET scanning is considered investigational as a technique to detect regional lymph node metastases in patients with clinically localized melanoma who are candidates to undergo sentinel node biopsy.

Multiple Myeloma
PET scanning may be considered medically necessary in the staging or restaging of multiple myeloma, particularly if the skeletal survey is negative.

Neuroendocrine tumors
PET scanning with gallium 68 may be considered medically necessary as a technique for staging neuroendocrine tumors either during initial staging or for restaging at follow-up.
PET scanning with other radiotracers is considered investigational in all aspects of managing neuroendocrine tumors.

Ovarian Cancer
PET scanning may be considered medically necessary in the evaluation of patients with signs and/or symptoms of suspected ovarian cancer recurrence (restaging) when standard imaging, including CT scan, is inconclusive.
PET scanning is considered investigational in the initial evaluation of known or suspected ovarian cancer in all situations.

Pancreatic Cancer
PET scanning may be considered medically necessary in the initial diagnosis and staging of pancreatic cancer when other imaging and biopsy are inconclusive.
PET scanning is considered investigational as a technique to evaluate other aspects of pancreatic cancer.

Penile Cancer
PET scanning is considered investigational in all aspects of managing penile cancer.

PROSTATE CANCER
PET scanning with carbon 11 choline and fluorine 18 fluciclovine may be medically necessary for evaluating suspected or biochemically recurrent prostate cancer after primary treatment to detect small volume disease in soft tissues.
PET scanning with gallium 68 is considered investigational in all aspects of managing prostate cancer.
PET scanning for all other indications in known or suspected prostate cancer is considered investigational.

Renal Cell Carcinoma
PET scanning is considered investigational in all aspects of managing renal cancer.

Soft Tissue Sarcoma
PET scanning is considered investigational in evaluation of soft tissue sarcoma, including but not limited to the following applications:
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

- Distinguishing between benign lesions and malignant soft tissue sarcoma,
- Distinguishing between low-grade and high-grade soft tissue sarcoma,
- Detecting locoregional recurrence,
- Detecting distant metastasis.

PET scanning is considered **medically necessary** for evaluating response to imatinib and other treatments for gastrointestinal stromal tumors.

Testicular Cancer

PET scanning may be considered **medically necessary** in evaluation of residual mass following chemotherapy of stage IIB and III seminomas. (The scan should be completed no sooner than 6 weeks after chemotherapy.)

Except as noted above for seminoma, PET scanning is considered **investigational** in evaluation of testicular cancer, including but not limited to the following applications:

- Initial staging of testicular cancer,
- Distinguishing between viable tumor and necrosis/fibrosis after treatment of testicular cancer, and
- Detection of recurrent disease after treatment of testicular cancer.

Thyroid Cancer

PET scanning may be considered **medically necessary** in the restaging of patients with differentiated thyroid cancer when thyroglobulin levels are elevated and whole-body iodine-131 imaging is negative.

PET scanning is considered **investigational** in the evaluation of known or suspected differentiated or poorly differentiated thyroid cancer in all other situations.

Cancer of Unknown Primary

PET scanning may be considered **medically necessary** in patients with a cancer of unknown primary who meet ALL of the following criteria:

- In patients with a single site of disease outside the cervical lymph nodes, and
- Patient is considering local or regional treatment for a single site of metastatic disease, and
- After a negative workup for an occult primary tumor, and
- PET scan will be used to rule out or detect additional sites of disease that would eliminate the rationale for local or regional treatment.

PET scanning is considered **investigational** for other indications in patients with a cancer of unknown primary, including, but not limited to the following:

- As part of the initial workup of a cancer of unknown primary, and
- As part of the workup of patients with multiple sites of disease.

Cancer Surveillance

PET scanning is considered **investigational** when used as a surveillance tool for patients with cancer or with a history of cancer. A scan is considered surveillance if performed more than 6 months after completion of cancer therapy (12 months for lymphoma) in patients without objective signs or symptoms suggestive of cancer recurrence (see Policy Guidelines section).
POLICY GUIDELINES

Patient Selection
As with any imaging technique, the medical necessity of positron emission tomography (PET) scanning depends in part on what imaging techniques are used before or after the PET scanning. Due to its expense, PET scanning is typically considered after other techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), or ultrasonography, provide inconclusive or discordant results.

In patients with melanoma or lymphoma, PET scanning may be considered an initial imaging technique. If so, the medical necessity of subsequent imaging during the same diagnostic evaluation is unclear. Thus, PET should be considered for the medically necessary indications above only when standard imaging (eg, CT, MRI) is inconclusive or not indicated.

Patient selection criteria for PET scanning also may be complex. For example, it may be difficult to determine from claims data whether a PET scan in a patient with malignant melanoma is being done primarily to evaluate extranodal disease or regional lymph nodes. Similarly, it may be difficult to determine whether a PET scan in a patient with colorectal cancer is being performed to detect hepatic disease or evaluate local recurrence. Due to the complicated hierarchy of imaging options in patients with malignancy and complex patient selection criteria, a possible implementation strategy for this policy is its use for retrospective review, possibly focusing on cases with multiple imaging tests, including PET scans.

Use of PET scanning for surveillance as described in the policy statement and policy rationale refers to the use of PET to detect disease in asymptomatic patients at various intervals. This is not the same as the use of PET for detecting recurrent disease in symptomatic patients; these applications of PET are considered within tumor-specific categories in the policy statements.

A PET scan involves 3 separate activities: (1) manufacture of the radiopharmaceutical, which may be on site or at a regional center with delivery to the institution performing PET; (2) actual performance of the PET scanner; and (3) interpretation of the results. CPT and HCPCS codes are available to code for PET scans.

When the radiopharmaceutical is provided by an outside distribution center, there may be an additional separate charge, or this charge may be passed through and included in the hospital bill. In addition, an extra transportation charge will be likely for radiopharmaceuticals that are not manufactured on site.

BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

FDA REGULATORY STATUS

The Food and Drug Administration website includes various PET-related documents. As of July 2018, the following radiopharmaceuticals have been granted approval by the Food and Drug Administration, to be used with PET for carcinoma-related indications (see Table 1).

Table 1. Radiopharmaceuticals Approved for Use With PET for Oncologic Applications

<table>
<thead>
<tr>
<th>Radiopharmaceutical</th>
<th>Manufacturer</th>
<th>Name</th>
<th>Carcinoma-Related Indication With PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon-11 choline (C-11)</td>
<td>Various</td>
<td></td>
<td>Suspected prostate cancer recurrence based on elevated blood PSA after therapy and noninformative bone scintigraphy, CT, or MRI</td>
</tr>
<tr>
<td>Fluorine-18 fluorodeoxyglucose (FDG)</td>
<td>Various</td>
<td></td>
<td>Suspected or existing diagnosis of cancer, all types</td>
</tr>
<tr>
<td>Fluorine-18 fluciclovine</td>
<td>Blue Earth</td>
<td>Axumin™</td>
<td>Suspected prostate cancer recurrence based on</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

<table>
<thead>
<tr>
<th>Gallium-68 dotatate</th>
<th>Diagnostics</th>
<th>NETSPOT™ Localization of somatostatin receptor positive NETs in adult and pediatric patients</th>
</tr>
</thead>
</table>

Diagnostics

NETSPOT™ Localization of somatostatin receptor positive NETs in adult and pediatric patients

Gallium-68 dotatate

Advanced Accelerator Applications

CT: computerized tomography; **MRI:** magnetic resonance imaging; **NET:** neuroendocrine tumors; **PET:** positron emission tomography; **PSA:** prostate-specific antigen.

RATIONALE

Summary of Evidence

Bladder Cancer

For individuals who have suspected or diagnosed bladder cancer in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. Pooled analyses showed relatively high sensitivity and specificity. Clinical guidelines include PET and PET/CT as considerations in staging bladder cancer, though CT, magnetic resonance imaging, and chest radiographs are also appropriate techniques for staging purposes. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing bladder cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Bone Sarcoma

For individuals who have suspected or diagnosed bone sarcoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET or PET/CT can effectively diagnose and stage bone sarcoma. PET or PET/CT has high sensitivities and specificities in detecting metastases in bone and lymph nodes; however, the tests have low sensitivity in detecting lung metastases. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing bone sarcoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Brain Tumors

For individuals who have diagnosed brain tumors and in need of staging or restaging information or who have suspected brain tumor who receive FDG-PET, 18F-FET-PET, or carbon 11 (11C) methionine PET, the evidence includes several systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET or PET/CT can be effective in distinguishing brain tumors from normal tissue. Indirect comparisons between the radiotracers 11C-methionine and FDG have shown that 11C-methionine may have better diagnostic performance. Clinical guidelines include PET to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing brain cancer treatment who receive FDG-PET, fluorine 18 fluoro-ethyl-tyrosine-PET, or 11C-methionine PET, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses did not support the use of PET.
for surveillance of brain cancer following treatment. The evidence is insufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Breast Cancer

For individuals who have diagnosed breast cancer and inconclusive results from other imaging techniques who receive adjunctive FDG-PET or FDG-PET/CT for staging or restaging, the evidence includes meta-analyses. The relevant outcome is test validity. While studies included in the meta-analyses reported variability in estimates of sensitivity and specificity, FDG-PET or FDG-PET/CT may be helpful in situations in which standard staging results are equivocal or suspicious, particularly in patients with locally advanced or metastatic disease. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected or diagnosed breast cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment, several systematic reviews, and meta-analyses. The relevant outcome is test validity. There is no evidence supporting the use of PET in diagnosing breast cancer. The false-negative rates (5.5%-8.5%) using PET in patients with breast cancer can be considered unacceptable, given that breast biopsy can provide more definitive results. PET/CT may be considered for detection of metastases only when results from other imaging techniques are inconclusive. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing breast cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cervical Cancer

For individuals who have diagnosed cervical cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ report and a meta-analysis. The relevant outcome is test validity. Pooled results have shown that PET can be used for staging or restaging and for detecting recurrent disease. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected cervical cancer or who are asymptomatic after completing cervical cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. Relevant outcomes are test accuracy and test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Colorectal Cancer

For individuals who have diagnosed colorectal cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. Several pooled analyses evaluating staging or restaging using PET or PET/CT resulted in wide ranges of sensitivities and specificities, from 16% to 99%. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected colorectal cancer or who are asymptomatic after completing colorectal cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and meta-analysis. The relevant outcome is test validity. A meta-analysis evaluating the diagnostic accuracy of PET or PET/CT showed a high sensitivity but low specificity. The evidence for the use of PET or PET/CT does not show a benefit over the use of contrast CT in patients with colorectal cancer. The evidence is insufficient to determine the effects of the technology on health outcomes.
Endometrial Cancer
For individuals who have diagnosed endometrial cancer in need of staging or restaging information or who are asymptomatic after completing endometrial cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. Pooled estimates from the meta-analysis showed high sensitivities and specificities for FDG-PET/CT in detecting lymph node metastases and endometrial cancer recurrence following treatment. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Esophageal Cancer
For individuals who have diagnosed esophageal cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes several meta-analyses. The relevant outcome is test validity. Pooled estimates have shown high sensitivities and specificities compared to other diagnostic imaging techniques. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected esophageal cancer or who are asymptomatic after completing esophageal cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes meta-analyses. The relevant outcome is test validity. Pooled analyses have shown adequate sensitivities but low specificities. The evidence is insufficient to determine the effects of the technology on health outcomes.

Gastric Cancer
For individuals who have suspected or diagnosed with gastric cancer and in need of staging or restaging information, who receive FDG-PET or FDG-PET/CT, the evidence includes several meta-analyses. The relevant outcome is test validity. Pooled analyses, with sensitivities and specificities ranging from 78% to 88%, have shown that PET or PET/CT can inform staging or restaging of patients with gastric cancer. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing gastric cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes meta-analyses. The relevant outcome is test validity. Pooled analyses have shown low sensitivities and specificities. The evidence is insufficient to determine the effects of the technology on health outcomes.

Head and Neck Cancer
For individuals who have suspected or diagnosed head and neck cancer who need staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. In patients with head and neck cancers, PET and PET/CT are better able to detect local and metastatic disease compared with other imaging techniques. Evidence has also shown that FDG-PET/CT may be useful in predicting response to therapy. Two meta-analyses calculated the ability of FDG-PET or PET/CT to detect residual or recurrent disease during various stages of treatment and another meta-analysis calculated the ability of positive PET or PET/CT results to predict overall survival and event-free survival. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing head and neck cancer treatment who receive -FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.
Non-Small-Cell Lung Cancer
For individuals who have suspected NSCLC and inconclusive results from other imaging techniques or who have diagnosed NSCLC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes several meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET and PET/CT have better diagnostic performance than conventional imaging techniques. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected NSCLC or who are asymptomatic after completing NSCLC treatment who receive FDG-PET or -FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Small-Cell Lung Cancer
For individuals with diagnosed small-cell lung cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and a meta-analysis. The relevant outcome is test validity. While the quality of the studies was considered low, PET and PET/CT can be considered for staging or restaging in patients with small-cell lung cancer if limited stage is suspected. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected small-cell lung cancer or who are asymptomatic after completing small-cell lung cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcomes are test accuracy and test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Hodgkin and Non-Hodgkin Lymphoma
For individuals who have suspected or diagnosed Hodgkin and non-Hodgkin lymphoma in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. PET and PET/CT have been found to provide useful information in the management of Hodgkin and non-Hodgkin lymphoma. The Deauville 5-point scale was developed based on PET results and can be used for staging and treatment response for patients with lymphoma. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing Hodgkin lymphoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing non-Hodgkin lymphoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Melanoma
For individuals who have suspected or diagnosed stage I or II melanoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment. The relevant outcome is test validity. Evidence has shown PET and PET/CT are not as beneficial as the reference standard (sentinel node biopsy) for assessing regional lymph nodes. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who have diagnosed advanced melanoma (stage III or IV) and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and a meta-analysis. The relevant outcome is test validity. Evidence has shown PET and PET/CT can detect systemic metastases in patients with advanced melanoma. Clinical guidelines include PET/CT for staging or restaging stage III or IV disease and for surveillance. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing melanoma treatment who receive FDG-PET or FDG-PET/CT, the evidence includes retrospective and observational studies. The relevant outcome is test validity. At the discretion of the physician, imaging surveillance can be considered every 3 to 12 months. Because recurrences usually occur within 3 years, screening asymptomatic patients beyond 3 to 5 years is not recommended. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Multiple Myeloma
For individuals who have suspected or diagnosed multiple myeloma in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes 2 systematic reviews, one of which conducted a meta-analysis. The relevant outcome is test validity. The meta-analysis reported high sensitivity in detecting extramedullary lesions in patients with multiple myeloma. The other systematic review compared FDG-PET with whole body x-ray and reported that FDG-PET was more sensitive in detecting myeloma bone lesions. Clinical guidelines include PET/CT on the list of imaging techniques that may be useful in certain circumstances, to discern active from smoldering myeloma, particularly if the skeletal survey is negative. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing multiple myeloma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Neuroendocrine Tumors
For individuals who have suspected or diagnosed neuroendocrine tumors and in need of staging or restaging information or who are asymptomatic after completing neuroendocrine tumor treatment who receive FDG-PET or FDG-PET/CT, the evidence includes 2 meta-analyses. The relevant outcome is test validity. The evidence did not compare PET or PET/CT with other modalities and, therefore, did not provide comparative effectiveness information. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected or diagnosed neuroendocrine tumors and in need of staging or restaging information who receive 68Ga-PET or 68Ga-PET/CT, the evidence includes several systematic reviews with meta-analyses. The relevant outcome is test validity. The meta-analyses showed relatively high sensitivities and specificities compared with other imaging techniques in the diagnosis and staging of neuroendocrine tumors. Clinical guidelines support the use of the 68Ga radiotracer in the diagnosis and staging of neuroendocrine tumors. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing neuroendocrine tumor treatment who receive 68Ga-PET or 68Ga-PET/CT, there is no evidence. The evidence is insufficient to determine the effects of the technology on health outcomes.

Ovarian Cancer
For individuals who have diagnosed ovarian cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ systematic review and several meta-analyses. The relevant outcome is test validity. Pooled sensitivities and specificities have supported the
use of PET and PET/CT for the detection of recurrent ovarian cancer. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected ovarian cancer or who are asymptomatic after completing ovarian cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Pancreatic Cancer

For individuals who have suspected or diagnosed pancreatic cancer and with inconclusive results from other imaging techniques who receive adjunctive FDG-PET or FDG-PET/CT for staging or restaging, the evidence includes a TEC Assessment and a systematic review. The relevant outcome is test validity. The evidence has shown that PET and PET/CT do not have a high enough negative predictive value to surpass current standard decision thresholds. Therefore, PET or PET/CT should only be considered if the results from standard staging methods are inconclusive. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected or diagnosed pancreatic cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ systematic review, a TEC Assessment, and a meta-analysis published after the review and assessment. The relevant outcome is test validity. The evidence has shown that PET and PET/CT do not have a high enough negative predictive value to surpass current standard decision thresholds. Therefore, PET or PET/CT should only be considered if the results from standard staging methods are inconclusive. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing pancreatic cancer treatment who receive F-FDG-PET or F-FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Penile Cancer

For individuals who have suspected or diagnosed penile cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and a meta-analysis. The relevant outcome is test validity. The evidence has shown that PET had a low sensitivity, and no comparisons were made with other modalities. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing penile cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Prostate Cancer

For individuals who have suspected or diagnosed prostate cancer and in need of staging or restaging information who receive ¹¹C-choline PET, ¹¹C-choline PET/CT, ¹⁸F-fluciclovine PET, ¹⁸F-fluciclovine PET/CT, evidence includes several meta-analyses. The relevant outcome is test validity. Meta-analyses have reported that the choice of radiotracer affects the sensitivity and specificity of the scans, with most evidence showing that the use of ¹¹C-choline or ¹⁸F-fluciclovine results in the highest sensitivities and specificities compared with FDG-PET and ¹¹C-acetate. Of interest is a single study that investigated the use of PET/CT results to inform patient decisions on radiotherapy treatment plans. The study reported that 40% of the patients altered the extent of the treatment planned based on the PET/CT results. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

For individuals who are asymptomatic after completing prostate cancer treatment who receive 11C-choline PET, 11C-choline PET/CT, 18F-fluciclovine PET, 18F-fluciclovine PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected or diagnosed prostate cancer and in need of staging or restaging information who receive 68Ga-PET or 68Ga-PET/CT, the evidence includes a meta-analysis of small single-institution studies. The relevant outcome is test validity. The evidence is limited, resulting in estimates with large confidence intervals. The evidence is insufficient to determine the effects of the technology on health outcomes.

Renal Cell Carcinoma

For individuals who are diagnosed with RCC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. The review concluded that PET has the potential to detect metastatic or recurrent lesions in patients with RCC, but that additional prospective studies are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Soft Tissue Sarcoma

For individuals who have diagnosed soft tissue sarcoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ review and a systematic review using PET for assessing response to imatinib. The relevant outcome is test validity. The review reported that PET had low diagnostic accuracy and there was a lack of studies comparing PET with alternative diagnostic modalities. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have diagnosed soft tissue sarcoma and in need of rapid reading of response to imatinib treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review. The relevant outcome is test validity. The review concluded that PET/CT can be used to monitor treatment response to imatinib, which can lead to individually adapted treatment strategies. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Testicular Cancer

For individuals with diagnosed testicular cancer in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ systematic review and assessment. The relevant outcome is test validity. Results have shown that PET or PET/CT can evaluate residual masses following chemotherapy for seminoma. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. There is no evidence supporting the use of PET or PET/CT in nonseminoma patients. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected testicular cancer or who are asymptomatic after completing testicular cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.
Thyroid Cancer
For individuals with diagnosed thyroid cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET or PET/CT can effectively detect recurrent differentiated thyroid cancer. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected thyroid cancer or who are asymptomatic after completing thyroid cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cancer of Unknown Primary and Single-Site Metastatic Disease
For individuals with cancer of unknown primary and single-site metastatic disease who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment. The relevant outcome is test validity. Studies reviewed in the Assessment showed that PET identified previously undetected metastases confirmed by biopsy. PET can contribute to the management of patients with cancer of unknown primary. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

SUPPLEMENTAL INFORMATION
Practice Guidelines and Position Statements
Bladder Cancer
American College of Radiology
The American College of Radiology (ACR; 2018) issued an Appropriateness Criteria for pretreatment staging of muscle-invasive bladder cancer.4 ACR stated that FDG-PET/CT “may be appropriate” for the pretreatment staging of muscle-invasive bladder cancer. However, the ACR cited CT, MRI, and chest radiographs as the most appropriate imaging techniques for pretreatment staging.

National Comprehensive Cancer Network
National Comprehensive Cancer Network (NCCN) guidelines for bladder cancer (v.5.2018) state that PET/CT “may be beneficial in selected patients with T2 (muscle-invasive disease) and in patients with ≥T3 disease” (category 2B).5 According to the guidelines, PET/CT may also be considered if metastasis is suspected in high-risk patients (category 2B). However, the guidelines note that “PET/CT should not be used to delineate the anatomy of the upper urinary tract” or in patients with nonmuscle invasive bladder cancer.

Bone Sarcoma
National Comprehensive Cancer Network
NCCN guidelines for bone cancer (v.2.2018) state that PET/CT may be considered for:

- Workup of patients with chordoma, Ewing sarcoma, or osteosarcoma,
- Restaging in patients with Ewing sarcoma or osteosarcoma, and
- Surveillance of patients with Ewing sarcoma or osteosarcoma, every 3 months for 2 years, every 4 months during year 3, every 6 months during years 4 and 5, then once annually (category 2B).

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
Brain Tumors

National Comprehensive Cancer Network
NCCN guidelines for brain cancer (v.1.2018) state that PET can assess metabolism within the tumor and normal tissue by using radio-labeled tracers, which may be useful in differentiating tumor from radiation necrosis, may correlate with tumor grade, or provide an optimal area for biopsy. The guidelines warn that limitations include accuracy of interpretations and availability of equipment and isotopes.

Breast Cancer

American College of Radiology
ACR issued an Appropriateness Criteria for the initial workup and surveillance for local recurrence and distant metastases in asymptomatic women with stage I breast cancer. ACR noted that FDG-PET/CT is usually not appropriate during initial workup or surveillance of these patients, to rule out metastases.

National Comprehensive Cancer Network
NCCN guidelines on breast cancer (v.1.2018) include an optional category 2B recommendation for FDG-PET/CT in the workup of stage IIIA breast cancer.

NCCN recommends against FDG-PET/CT for lower stage breast cancer (I, II, or operable III) due to high false-negative rates in detecting low-grade lesions or lesions less than 1 cm; low sensitivity in detecting axillary node metastasis; the low prior probability of detectable metastases in these patients; and high false-positive rates. NCCN considers PET or PET/CT most helpful when “standard staging studies are equivocal or suspicious, especially in the setting of locally advanced or metastatic disease.”

NCCN guidelines do not recommend routine use of PET in asymptomatic patients for surveillance and follow-up after breast cancer treatment. When monitoring metastatic disease, the guidelines note that PET is “challenging because of the absence of a reproducible, validated, and widely accepted set of standards for disease activity assessment.”

For individuals who are asymptomatic after completing breast cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cervical Cancer

National Comprehensive Cancer Network
NCCN guidelines on cervical cancer (v2.2018) state that PET/CT may be considered under the following conditions:

- Part of the initial nonfertility and fertility-sparing workup for patients with stage I cervical cancer.
- Part of the initial staging workup for detection of stage II, III, or IV metastatic disease
 - Follow-up/surveillance for stage I (only nonfertility sparing) through stage IV at 3 to 6 months after completion of therapy or if there is suspected recurrence or metastases.

Colorectal Cancer

American College of Radiology
ACR (2017) issued an Appropriateness Criteria for the pretreatment staging of CRC. In the evaluation of distant metastases, the criteria stated that “routine use of PET/CT is likely not indicated; however, it may provide guidance in cases of advanced, bilobar liver disease to exclude extrahepatic metastases prior to surgical intent to cure.”
National Comprehensive Cancer Network
NCCN guidelines for colon cancer (v.2.2018) "strongly discourage the routine use of PET/CT scanning for staging, baseline imaging, or routine follow-up and recommend consideration of a preoperative PET/CT scan at baseline only if prior anatomic imaging indicates the presence of potentially surgically curable M1 disease." For initial workup of nonmetastatic patients, the guidelines state "PET/CT does not supplant a contrast-enhanced diagnostic CT scan. PET/CT should only be used to evaluate an equivocal finding on a contrast-enhanced CT scan or in patients with strong contraindications to IV [intravenous] contrast." For workup of proven metastatic synchronous adenocarcinoma, the guidelines state that PET/CT may be considered. PET/CT is not recommended for surveillance. NCCN has noted that PET/CT should not be used to assess response to chemotherapy. NCCN was divided on the appropriateness of PET/CT when carcinoembryonic antigen level is rising; PET/CT might be considered when imaging study results (eg, a good quality CT scan) are normal.

NCCN guidelines for rectal cancer (v.2.2018) state that PET/CT is "not routinely indicated" and "should only be used to evaluate an equivocal finding on a contrast-enhanced CT scan or in patients with strong contraindications to IV contrast." PET/CT is not recommended for restaging or for surveillance. PET/CT can be considered if serial carcinoembryonic antigen elevation occurs or if there is documented metachronous metastases.

Endometrial Cancer
National Comprehensive Cancer Network
NCCN guidelines for endometrial cancer (v.2.2018) state that whole body PET/CT can be considered in the initial workup, in both nonfertility and fertility-sparing management, if metastases are suspected in select patients (based on clinical symptoms, physical findings, or abnormal laboratory findings). PET/CT may also be considered for patients with suspected recurrence or metastases who are candidates for surgery/locoregional therapy. Following treatment, PET/CT can be considered in select patients for surveillance, if clarification is needed.

Esophageal Cancer
National Comprehensive Cancer Network
NCCN guidelines for esophageal cancer (v.2.2018) indicate that PET/CT can be considered under the following conditions:
- Part of the initial workup if there is no evidence of M1 disease.
- To assess response to preoperative or definitive chemoradiation.
- For staging purposes, prior to surgery to obtain nodal distribution information.

There is no discussion on the use of PET/CT for surveillance. The guidelines note that PET/CT for these indications is preferable to PET alone.

Gastric Cancer
National Comprehensive Cancer Network
NCCN guidelines for gastric cancer (v.2.2018) indicate that PET/CT (but not PET alone) can be used as part of an initial workup if there is no evidence of metastatic disease. The guidelines note that the sensitivity of PET/CT is lower than for CT alone due to low tracer accumulation in diffuse and mucinous tumor types, but specificity is higher. PET/CT adds value to the diagnostic workup with higher accuracy in staging (identifying tumor and pertinent nodal groups). NCCN guidelines also indicate that PET/CT can be used to evaluate response to treatment, in cases of renal insufficiency or allergy to CT contrast. There is no discussion on the use of PET/CT for surveillance.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

Head and Neck Cancer

National Comprehensive Cancer Network
NCCN guidelines on head and neck cancer (v.2.2018) indicate that PET/CT can be appropriate for stage III or IV disease evaluation, for detection of metastases or recurrence, and for evaluation of response to treatment (at a minimum of 12 weeks posttreatment to reduce false-positive rate). There is no discussion on the use of PET/CT for surveillance.

Non-Small-Cell Lung Cancer

National Comprehensive Cancer Network
NCCN guidelines for NSCLC (v.6.2018) indicate that PET/CT can be used in the staging of the disease, detection of metastases, treatment planning, and detection of disease recurrence. The guidelines note that PET is “best performed before a diagnostic biopsy site is chosen in cases of high clinical suspicion for aggressive, advanced-stage tumors.” However, PET is not recommended for detection of brain metastasis from lung cancers. While PET/CT is not routinely recommended for surveillance after completion of definitive therapy, it may be considered to differentiate between true malignancies and benign conditions (eg, atelectasis, consolidation, and radiation fibrosis), which may have been detected by CT imaging. If PET/CT detects recurrent disease, biopsy confirmation is necessary prior to initiating additional treatment because FDG remains avid up to 2 years.

The American College of Chest Physicians (2013) issued guidelines for the diagnosis and management of NSCLC. The guidelines stated that RCTs support the use of PET or PET/CT scanning as a component of lung cancer treatment and recommended PET or PET/CT for staging, detection of metastases, and avoidance of noncurative surgical resections.

Small-Cell Lung Cancer

National Comprehensive Cancer Network
NCCN guidelines for NSCLC (v.6.2018) indicate that PET/CT can be used in the staging of the disease, detection of metastases, treatment planning, and detection of disease recurrence. The guidelines note that PET is “best performed before a diagnostic biopsy site is chosen in cases of high clinical suspicion for aggressive, advanced-stage tumors.” However, PET is not recommended for detection of brain metastasis from lung cancers. While PET/CT is not routinely recommended for surveillance after completion of definitive therapy, it may be considered to differentiate between true malignancies and benign conditions (eg, atelectasis, consolidation, and radiation fibrosis), which may have been detected by CT imaging. If PET/CT detects recurrent disease, biopsy confirmation is necessary prior to initiating additional treatment because FDG remains avid up to 2 years.

NCCN guidelines for SCLC (v.2.2018) indicate PET/CT can be used in the staging of disease if limited stage is suspected. If extensive stage is established, brain imaging, MRI (preferred), or CT with contrast is recommended. PET/CT “is not recommended for routine follow-up.”

The American College of Chest Physicians (2013) issued guidelines for the diagnosis and management of NSCLC. The guidelines stated that RCTs support the use of PET or PET/CT scanning as a component of lung cancer treatment and recommended PET or PET/CT for staging, detection of metastases, and avoidance of noncurative surgical resections.

Hodgkin and Non-Hodgkin Lymphoma

National Comprehensive Cancer Network
NCCN guidelines for Hodgkin lymphoma (v.3.2018) and non-Hodgkin lymphomas (v.4.2018) indicate that PET/CT may be used in the diagnostic workup, staging, restaging, and evaluating treatment...
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

response. The guidelines recommend using the internationally recognized Deauville 5-point PET scale for initial staging and assessment of treatment response. The following PET/CT results are assigned the corresponding scores: 1=no uptake; 2=uptake ≤ mediastinum; 3=uptake > mediastinum but ≤ liver; 4=uptake moderately higher than liver; and 5=uptake markedly higher than liver and/or new lesions. The Deauville PET scores can be used to determine the course of treatment. The guidelines note that if PET/CT detects 3 or more skeletal lesions, the marrow may be assumed to be involved and marrow biopsies are no longer indicated. The guidelines also note "Surveillance PET should not be done routinely due to risks for false positives. Management decisions should not be based on PET scan alone; clinical or pathologic correlation is needed."

Melanoma

National Comprehensive Cancer Network

NCCN guidelines for melanoma (v.3.2018) indicate that PET/CT can be used for staging and restaging more advanced disease (eg, stage III) in the presence of specific signs and symptoms. PET/CT is not recommended for stage I or II disease. PET/CT also is listed as an option for surveillance screening for recurrence every 3 to 12 months (category 2B) at the physician’s discretion. Because most recurrences occur within the first 3 years, routine screening for asymptomatic recurrence is not recommended beyond 3 to 5 years. The guidelines note that the safety of PET/CT is of concern due to cumulative radiation exposure.

Multiple Myeloma

National Comprehensive Cancer Network

NCCN guidelines for multiple myeloma (v.1.2019) added PET/CT to the list of imaging techniques that may be useful under certain circumstances, to discern active from smoldering myeloma, particularly if the skeletal survey is negative. PET/CT may also be considered to detect disease progression.

Neuroendocrine Tumors

National Comprehensive Cancer Network

NCCN guidelines for neuroendocrine tumors (v.2.2018) have recommended somatostatin receptor-based imaging with PET/CT, using 68Ga-dotatate as the radioactive tracer. The guidelines note that 68Ga-PET/CT is more sensitive than somatostatin receptor scintigraphy for determining somatostatin receptor status. 68Ga-PET/CT is recommended for diagnosis, staging, and restaging. FDG-PET may be considered in poorly differentiated carcinomas only in biopsy proven neuroendocrine tumors of unknown primary. Neither 68Ga-PET/CT nor FDG-PET are recommended for surveillance. 18F-DOPA PET/CT is not discussed in the guidelines.

Ovarian Cancer

American College of Radiology

ACR Appropriateness Criteria (2018) on staging and follow-up of ovarian cancer have stated that PET/CT and MRI may be appropriate when lesions are indeterminate with contrast-enhanced CT.

National Comprehensive Cancer Network

NCCN guidelines for ovarian cancer (v.2.2018) indicate that PET/CT can be appropriate “for indeterminate lesions if results will alter management." PET/CT may be considered for monitoring patients with stage II through IV ovarian cancer receiving primary chemotherapy if clinically indicated. PET/CT also can be considered if clinically indicated after complete remission, for follow-up and for monitoring for recurrence if CA-125 is rising or clinical relapse is suspected.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

Pancreatic Cancer

National Comprehensive Cancer Network
NCCN guidelines for pancreatic cancer (v.2.2018) state “the role of PET/CT remains unclear… [PET/CT] may be considered after formal pancreatic CT protocol in high-risk patients to detect extra pancreatic metastasis. It is not a substitute for high-quality contrast-enhanced CT.”

Penile Cancer

National Comprehensive Cancer Network
NCCN guidelines for penile cancer (v.2.2018) states that PET/CT may be considered in patients with penile cancer for the evaluation of enlarged pelvic lymph nodes.

Prostate Cancer

American College of Radiology
ACR Appropriateness Criteria on posttreatment follow-up of patients with prostate cancer have stated that PET and PET/CT using 11C-choline or 18F-fluciclovine radiotracers is usually appropriate for patients with a clinical concern for residual or recurrent disease following radical prostatectomy, nonsurgical treatments, or systemic therapy.

National Comprehensive Cancer Network
NCCN guidelines for prostate cancer (v.3.2018) indicate that 11C-choline PET may be considered for evaluating biochemical failure after primary treatment (ie, radiotherapy or radical prostatectomy). To evaluate progression, 11C-choline PET/CT or 18F-fluciclovine PET/CT may be considered for soft tissue assessment and 18F-sodium fluoride PET/CT may be considered for bone assessment. The guidelines note that 18F-sodium fluoride PET/CT has greater sensitivity but lower specificity than standard bone scan imaging. FDG-PET should not be used routinely for initial assessment or in other settings, due to limited evidence of clinical utility.

Renal Cell Carcinoma

National Comprehensive Cancer Network
NCCN guidelines for RCC (v.4.2018) state that “The value of PET in RCC [renal cell carcinoma] remains to be determined. Currently, PET alone is not a tool that is standardly used to diagnose kidney cancer or follow for evidence of relapse after nephrectomy.”

Soft Tissue Sarcoma

National Comprehensive Cancer Network
NCCN guidelines for soft tissue sarcoma (v.2.2018) state that PET/CT may be useful in staging, prognostication, and grading. PET/CT can be useful in determining response to chemotherapy for lesions greater than 3 cm that are firm, deep, and not superficial. The guidelines also state that PET can provide information on imatinib activity after 2 to 4 weeks of therapy when rapid reading of activity is considered necessary; however, long-term PET follow-up is rarely indicated. The guidelines also indicate that PET can be used to assess the progression of disease if results from other imaging techniques (CT or MRI) are inconclusive.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

Testicular Cancer

National Comprehensive Cancer Network
NCCN guidelines for testicular cancer (v.2.2018) support the use of PET to evaluate residual masses that are greater than 3 cm following primary treatment with chemotherapy (at ≥6 weeks posttreatment). If a PET scan is negative, surveillance is recommended. If a PET scan is positive, resection or biopsy of residual mass is recommended. The guidelines warn that there is "limited predictive value for PET/CT scan for residual masses." PET is not recommended for nonseminoma patients.

Thyroid Cancer

National Comprehensive Cancer Network
NCCN guidelines for thyroid carcinoma continue to support the use of FDG-PET/CT in thyroid cancer evaluations, such as when iodine-131 imaging is negative and stimulated thyroglobulin is greater than 2 to 5 ng/mL.

NCCN guidelines for medullary thyroid cancer (v.1.2018) recommend contrast-enhanced CT with or without PET at 2 to 3 months postoperative surveillance. Additionally, PET/CT may be considered if recurrent disease is suspected.

Cancer of Unknown Primary and Single-Site Metastatic Disease

National Comprehensive Cancer Network
NCCN guidelines for Cancer of Unknown Primary (CUP) (v.1.2019) state that PET/CT may be useful in staging, and restaging of many malignancies and might be warranted in some situations for CUP. PET is a valuable imaging modality for patients with CUP with a single site of metastasis if therapy with a curative intent is planned.

Cancer Surveillance

National Comprehensive Cancer Network
The NCCN report by Podoloff et al (2009) stated that “PET as a surveillance tool should only be used in clinical trials.” Additionally, NCCN guidelines for various malignancies often note that PET scans are not recommended in asymptomatic patients. For example, NCCN guidelines for breast cancer comment that PET scans (as well as many other imaging modalities) provide no advantage in survival or ability to palliate recurrent disease and are not recommended.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Medicare coverage policy on positron emission tomography scans, which was updated in 2009 and last reviewed in August 2010, is summarized in Appendix Table 1.

REFERENCES

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2012</td>
<td>New</td>
<td>Policy updated with literature review. References 22-35 added, Policy statements revised with NMN added to breast cancer, colorectal cancer, soft tissue sarcomas and thyroid cancer. Thyroid cancer revised to include both differentiated and poorly differentiated disease, Prostate cancer moved to section on Other Oncologic Applications, also added to this section, are diagnosis of brain tumors, restaging of gastric cancer, staging of multiple myeloma, evaluation of neuroendocrine tumors and staging of inguinal lymph nodes in patients with squamous cell carcinoma of the penis.</td>
</tr>
<tr>
<td>June 2013</td>
<td>Update Policy</td>
<td>Policy was revised with literature search adding references 37-40, 42-75. PET for gastric cancer as medically necessary for initial work up and staging and for evaluation of recurrent gastric cancer when other imaging modalities are inconclusive.</td>
</tr>
<tr>
<td>June 2014</td>
<td>Update Policy</td>
<td>Policy revised with literature review; references 1, 42-43, 46, 48-50, 58, 62, 72, 77, 84, and 87 added. Policy statements unchanged.</td>
</tr>
<tr>
<td>June 2015</td>
<td>Update Policy</td>
<td>Policy revised with literature review through March 23, 2017; references 37, 41, 48-50, 59-63, 67, 69-70, 73, 76-80, 85, 94-98, 103, 109-110, 112, 115, 119-120, and 126 added. Additional details added to policy statements. The following statements were changed to medically necessary: staging or restaging of brain cancer; evaluation of response to treatment in head and neck cancer; and testing with 11C-choline for evaluating response to primary treatment in prostate cancer. Two additional indications were added.</td>
</tr>
<tr>
<td>September 2017</td>
<td>Update Policy</td>
<td>Policy revised with literature review through July 9, 2018; several references were added. The following statements were added for the new indications: “PET scanning may be considered medically necessary in the staging or restaging of muscle invasive bladder cancer” and “PET scanning with 68Gallium may be considered medically necessary as a technique for staging neuroendocrine tumors either during initial staging.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP 6.01.26 Oncologic Applications of Positron Emission Tomography Scanning

or for restaging at follow-up. In addition, the following statement was revised: the staging and restaging of multiple myeloma was changed from “investigational” to “may be considered medically necessary”. The following statement was also revised: staging and restaging of small cell lung cancer was changed from “investigational” to “medically necessary” if limited stage is suspected. 18F-fluciclovine was added as “medically necessary” for the staging and restaging of prostate cancer.

APPENDIX

Appendix Table 1. Effect of Coverage Changes on Oncologic Uses of FDG-PET

<table>
<thead>
<tr>
<th>Solid Tumor Type</th>
<th>Initial Treatment Strategy</th>
<th>Subsequent Treatment Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Head and neck (not thyroid or CNS)</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Non-small-cell lung</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Ovary</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Brain</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Cervix</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Small-cell lung</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Soft tissue sarcoma</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Testes</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Breast (female and male)</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Prostate</td>
<td>Not covered</td>
<td>CED</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Cover</td>
<td>Cover or CED</td>
</tr>
<tr>
<td>All other solid tumors</td>
<td>Cover</td>
<td>CED</td>
</tr>
<tr>
<td>Myeloma</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>All other cancers not listed herein</td>
<td>CED</td>
<td>CED</td>
</tr>
</tbody>
</table>

Adapted from Centers for Medicare & Medicaid Services (2010).156 See NCD Manual for specific coverage language. CED: coverage with evidence development; CNS: central nervous system; FGD: fluorine 18 fluorodeoxyglucose; PET: positron emission tomography.

156 Formerly “diagnosis” and “staging”.
157 Formerly “restaging” and “monitoring” response to treatment when a change in treatment is anticipated.
158 Cervix: Noncovered for the initial diagnosis of cervical cancer related to initial treatment strategy. All other indications for initial treatment strategy for cervical cancer are covered.
159 Breast: Noncovered for initial diagnosis and/or staging of axillary lymph nodes. Covered for initial staging of metastatic disease. All other indications for initial treatment strategy for breast cancer are covered.
160 Melanoma: Noncovered for initial staging of regional lymph nodes. All other uses for initial staging are covered.
161 Thyroid: Covered for subsequent treatment strategy of recurrent or residual thyroid cancer of follicular cell origin previously treated by thyroidectomy and radioiodine ablation and have a serum thyroglobulin >10 ng/mL and have a negative iodine-131 whole body scan. All other uses for subsequent treatment strategy are CED.