FEP Medical Policy Manual

FEP 6.01.24 Magnetic Resonance Spectroscopy

Effective Date: January 15, 2019
Related Policies: None

Magnetic Resonance Spectroscopy

Description
Magnetic resonance spectroscopy (MRS) is a noninvasive technique that can be used to measure the concentrations of different chemical components within tissues. The technique is based on the same physical principles as magnetic resonance imaging and the detection of energy exchange between external magnetic fields and specific nuclei within atoms.

OBJECTIVE
The objective of this evidence review is to evaluate whether magnetic resonance spectroscopy improves health outcomes in patients with brain tumors, breast cancer, prostate cancer, and various noncancer indications.

POLICY STATEMENT
Magnetic resonance spectroscopy is considered investigational.

POLICY GUIDELINES
Multiple software packages for performing proton MRS have been cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process since 1993. Single-voxel MRS is available on all modern MR scanners. Food and Drug Administration product code: LNH.

BENEFIT APPLICATION
Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

FDA REGULATORY STATUS
For individuals who have brain tumors who receive MRS, the evidence includes a number of small studies and systematic reviews. Relevant outcomes are test accuracy, change in disease status, morbid events, and functional outcomes. Small studies have evaluated detection, characterization, grading, prognosis, and differentiation of tumor recurrence vs necrosis. Most studies included in the meta-analyses were small, retrospective, and used various ratios of MRS spectra. The largest prospective studies found that combining MRS with MRI resulted in a greater percentage of correct diagnoses of pediatric brain tumor type. These reports had limited information on the specific MRS spectra associated with the different tumor types. Additional study is needed to define better the spectra associated with tumor characteristics, to evaluate the diagnostic accuracy, and to determine the effect on health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Original Policy Date: June 2012
For individuals who have breast cancer, prostate cancer, dementia, liver disease, or multiple sclerosis who receive MRS, the evidence includes prospective studies on diagnostic accuracy and systematic reviews. Relevant outcomes are test accuracy, change in disease status, morbidity events, and functional outcomes. A number of studies have examined the use of MRS for localizing prostate cancer for biopsy, for diagnosis, and for the monitoring of patients with prostate cancer. However, the cumulative evidence remains uncertain. Data comparing the diagnostic accuracy of MRS with alternative imaging strategies is limited. A systematic review of MRS to identify dementia concluded that to characterize Alzheimer disease–associated neurochemical changes effectively, future approaches need to analyze interactively multiple quantifiable metabolites from different brain regions. A study of MRS as a noninvasive alternative to liver biopsy indicated that dual-gradient echo MRI outperforms MRS. Data on use of MRS in multiple sclerosis has indicated that the measure is not sufficiently reliable to predict the future disease course. The evidence is insufficient to determine the effects of the technology on health outcomes.

RATIONALE

Summary of Evidence

National Comprehensive Cancer Network
The National Comprehensive Cancer Network's (NCCN) clinical guidelines on central nervous system cancers (v.1.2018) identifies magnetic resonance spectroscopy (MRS), as a modality that can be considered to rule out radiation necrosis, as compared with a recurrence of brain tumors. The guidelines also state that MRS may be helpful in grading tumors or assessing response and that the most abnormal area on MRS would be the best target for biopsy. The limitations include tumors near vessels, air spaces, or bone, and the extra time required in a magnetic resonance imaging machine.

NCCN clinical guidelines on prostate cancer (v.4.2018) list MRS as an advanced imaging technique but make no recommendations for its use.

NCCN clinical guidelines on breast cancer (v.1.2018) do not mention MRS.

American Association of Neurological Surgeons et al
The American Association of Neurological Surgeons and Congress of Neurological Surgeons (2015) gave a level III recommendation (level C) for the addition of MRS to anatomic imaging for the management of diffuse low-grade glioma, because the diagnostic accuracy is not well-defined and the role in clinical practice is still being defined.

Congress of Neurological Surgeons
The Congress of Neurological Surgeons (2016) published an evidence-based guideline on preoperative imaging assessment of patients with suspected nonfunctioning pituitary adenomas. The Congress found that although the results were promising, there was insufficient evidence to recommend the use of MRS formally.

American College of Radiology et al
The American College of Radiology, American Society of Neuroradiology, and Society for Pediatric Radiology (2013) updated their joint practice parameters on MRS of the central nervous system. Most of the update addressed the actual performance of MRS, but it also listed 22 possible indications for MRS when magnetic resonance imaging or computed tomography is inadequate for answering specific clinical questions.

American College of Radiology appropriateness criteria for prostate cancer, last reviewed in 2016, stated that MRS cannot yet be considered to provide significant advantages in local staging before treatment.

American College of Radiology appropriateness criteria for imaging of dementia and movement disorders (updated in 2015) considered MRS to be usually inappropriate.
FEP 6.01.24 Magnetic Resonance Spectroscopy

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements
Medicare (2004) issued a decision memorandum for MRS for brain tumors that reaffirmed its national noncoverage determination. After reviewing updated literature, a technology assessment it commissioned from the Agency for Healthcare Research and Quality, and the TEC Assessment, Medicare found the evidence inadequate to conclude that MRS is reasonable and necessary for the diagnosis of brain tumors.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

REFERENCES

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
Lancet Oncol. Jan 2010;11(1):92-102. PMID 20129132

18. Baltzer PA, Dietzel M. Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T--systematic

spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate
abnormalities for biopsy: a systematic review and economic evaluation. *Health Technol Assess.* May
2013;17(20):vii-xix, 1-281. PMID 23697373

contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. *Clin Cancer Res.*
Mar 15 2010;16(6):1875-1883. PMID 20197480

and dynamic contrast-enhanced MRI (DCE-MRI) in identifying prostate cancer foci in patients with negative
biopsy and high levels of prostate-specific antigen (PSA). *Radiol Med.* Dec 2010;115(8):1314-1329. PMID
20852963

22. Panebianco V, Sciarra A, Ciccariello M, et al. Role of magnetic resonance spectroscopic imaging in the

24. Perdona S, Di Lorenzo G, Autonio R, et al. Combined magnetic resonance spectroscopy and dynamic contrast-

25. Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic

accuracy of imaging examinations. *J Hepatol.* Apr 2010;52(4):579-585. PMID 20185194

27. Miller DH. Magnetic resonance spectroscopy: a possible in vivo marker of disease progression for multiple
sclerosis. *J Neurol Neurosurg Psychiatry.* May 2014;85(5):539-544. PMID 24698200

30. Miller DH. Magnetic resonance spectroscopy: a possible in vivo marker of disease progression for multiple

systemic lupus erythematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor

Mar-Apr 2010;110(2):159-164. PMID 20514826

35. Gardner A, Iversen GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy findings in

eritematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. *Lupus.*
Nov 5 2014;23(10):10-19. PMID 24192079

Mar-Apr 2010;110(2):159-164. PMID 20514826

39. Gardner A, Iversen GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy findings in

eritematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. *Lupus.*
Nov 5 2014;23(10):10-19. PMID 24192079

Mar-Apr 2010;110(2):159-164. PMID 20514826

43. Gardner A, Iversen GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy findings in

44. Thayyil S, Chandrasekaran M, Taylor A, et al. Cerebral magnetic resonance biomarkers in systemic lupus
eritematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. *Lupus.*
Nov 5 2014;23(10):10-19. PMID 24192079

Mar-Apr 2010;110(2):159-164. PMID 20514826

47. Gardner A, Iversen GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy findings in

eritematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. *Lupus.*
Nov 5 2014;23(10):10-19. PMID 24192079

Mar-Apr 2010;110(2):159-164. PMID 20514826

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP 6.01.24 Magnetic Resonance Spectroscopy

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2012</td>
<td>New Policy</td>
<td></td>
</tr>
<tr>
<td>March 2013</td>
<td>Update Policy</td>
<td>Policy updated with literature search. References 13, 14, 31-33 and 40 added. No change to policy statement.</td>
</tr>
<tr>
<td>March 2015</td>
<td>Update Policy</td>
<td>Policy updated with literature review; references 31 and 36 added. Policy statement unchanged.</td>
</tr>
<tr>
<td>December 2017</td>
<td>Update Policy</td>
<td>Policy updated with literature review through July 21, 2017; references 1, 12, 36, and 41-42 added; notes 44-45 updated. Policy statement unchanged.</td>
</tr>
<tr>
<td>December 2018</td>
<td>Update Policy</td>
<td>Policy updated with literature review through July 9, 2018; references 3, 8, 23, and 44-45 added; reference 43 updated. Policy statement unchanged.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.