FEP 7.01.07 Electrical Bone Growth Stimulation of the Appendicular Skeleton

Effective Date: July 15, 2017

Related Policies:
1.01.05 Ultrasound Accelerated Fracture Healing Device
7.01.85 Electrical Stimulation of the Spine as an Adjunct to Spinal Fusion Procedures
7.01.100 Bone Morphogenetic Protein

Electrical Bone Growth Stimulation of the Appendicular Skeleton

Description
In the appendicular skeleton, electrical stimulation with either implantable electrodes or noninvasive surface stimulators has been investigated to facilitate the healing of fresh fractures, stress fractures, delayed union, nonunion, congenital pseudoarthroses, and arthrodese.

FDA REGULATORY STATUS
In 1984, the noninvasive OrthoPak® Bone Growth Stimulator (BioElectron, now Zimmer Biomet) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process for treatment of fracture nonunion. Pulsed electromagnetic field systems with FDA premarket approval (all noninvasive devices) include Physio-Stim® (Orthofix), first approved in 1986, and OrthoLogic® 1000, approved in 1997, both indicated for treatment of established nonunion secondary to trauma, excluding vertebrae and all flat bones, in which the width of the nonunion defect is less than one-half the width of the bone to be treated; and the EBI Bone Healing System® (Electrobiology, now Zimmer Biomet), which was first approved in 1979 and indicated for nonunions, failed fusions, and congenital pseudoarthroses.

No distinction was made between long and short bones. FDA has approved labeling changes for electrical bone growth stimulators that remove any timeframe for the diagnosis.

No semi-invasive electrical bone growth stimulator devices with FDA approval or clearance were identified.
FDA product code LOF.

POLICY STATEMENT
Noninvasive electrical bone growth stimulation may be considered medically necessary as treatment of fracture nonunions or congenital pseudoarthroses in the appendicular skeleton (the appendicular skeleton includes the bones of the shoulder girdle, upper extremities, pelvis, and lower extremities). The diagnosis of fracture nonunion must meet ALL of the following criteria:
• at least 3 months have passed since the date of fracture;
• serial radiographs have confirmed that no progressive signs of healing have occurred;
• the fracture gap is 1 cm or less;
• the patient can be adequately immobilized; and
• the patient is of an age likely to comply with nonweight bearing for fractures of the pelvis and lower extremities.
FEP 7.01.07 Electrical Bone Growth Stimulation of the Appendicular Skeleton

Not medically necessary applications of electrical bone growth stimulation include, but are not limited to, delayed union, fresh fracture, stress fractures, immediate postsurgical treatment after appendicular skeletal surgery, arthrodesis, or failed arthrodesis. Implantable and semi-invasive electrical bone growth stimulators are considered not medically necessary.

POLICY GUIDELINES

FRACTURE NONUNION
No consensus on the definition of fracture nonunion currently exists. One proposed definition is failure of progression of fracture healing for at least 3 consecutive months (and for at least 6 months following the fracture), accompanied by clinical symptoms of delayed union or nonunion (pain, difficulty bearing weight) (Bhandari et al., 2012).

The original U.S. Food and Drug Administration (FDA) labeling of fracture nonunions defined them as fractures not showing progressive healing after at least 9 months from the original injury. The labeling states: “A nonunion is considered to be established when a minimum of 9 months has elapsed since injury and the fracture site shows no visibly progressive signs of healing for minimum of 3 months.” This timeframe is not based on physiologic principles but was included as part of the research design for FDA approval as a means of ensuring homogeneous populations of patients, many of whom were serving as their own controls. Others have contended that 9 months represents an arbitrary cutoff point that does not reflect the complicated variables present in fractures (ie, degree of soft tissue damage, alignment of the bone fragments, vascularity, quality of the underlying bone stock). Some fractures may show no signs of healing, based on serial radiographs as early as 3 months, while a fracture nonunion may not be diagnosed in others until well after 9 months. The current policy of requiring a 3-month timeframe for lack of progression of healing is consistent with the definition of nonunion as described in the clinical literature.

DELAYED UNION
Delayed union is defined as a decelerating healing process as determined by serial radiographs, together with a lack of clinical and radiologic evidence of union, bony continuity, or bone reaction at the fracture site for no less than 3 months from the index injury or the most recent intervention. In contrast, nonunion serial radiographs (described above) show no evidence of healing. When lumped together, delayed union and nonunion are sometimes referred to as “ununited fractures.”

FRESH FRACTURE
A fracture is most commonly defined as “fresh” for 7 days after its occurrence. Most fresh closed fractures heal without complications with the use of standard fracture care (ie, closed reduction, cast immobilization).

BENEFIT APPLICATION
Services, drugs, or supplies that are not medically necessary are not covered (See General Exclusion Section of brochure).

RATIONALE

Summary of Evidence
Noninvasive Electrical Bone Growth Stimulation
For individuals who have fracture nonunion who receive noninvasive electrical bone growth stimulation, the evidence includes randomized controlled trials (RCTs) and systematic reviews of RCTs. Relevant outcomes are symptoms, change in disease status, and functional outcomes. The U.S. Food and Drug Administration has approved noninvasive electrical bone growth stimulation for fracture nonunions and congenital pseudoarthroses in the appendicular skeleton, based largely on studies with patients serving as their own controls. There is also evidence from 2 small sham-controlled randomized trials that
FEP 7.01.07 Electrical Bone Growth Stimulation of the Appendicular Skeleton

Noninvasive electrical stimulators improve fracture healing for patients with fracture nonunion. However, there are few nonsurgical options in this population, and the pre-post studies of patients with nonhealing fractures support the efficacy of the treatment. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals who have delayed fracture union, fresh or stress fracture(s), or who have had surgery of the appendicular skeleton who receive noninvasive electrical bone growth stimulation, the evidence includes RCTs and systematic reviews of RCTs. Relevant outcomes are symptoms, change in disease status, and functional outcomes. A meta-analysis of 5 RCTs found no statistically significant benefit of electrical bone growth stimulation for fresh fractures. RCTs on delayed union of the other types of fractures were limited by small sample sizes and did not show significant differences in outcomes between study groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

Invasive Electrical Bone Growth Stimulation
For individuals who have fracture, pseudoarthroses, or who have had surgery of the appendicular skeleton who receive implantable and semi-invasive electrical bone growth stimulation, the evidence includes a small number of case series. Relevant outcomes are symptoms, change in disease status, and functional outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements
No guidelines or statements were identified.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Noninvasive stimulators are covered for the following indications:

• "Nonunion of long bone fractures;"
• Failed fusion, where a minimum of 9 months has elapsed since the last surgery;
• Congenital pseudoarthroses...."

Invasive stimulators are covered for:

• "Nonunion of long bone fractures."

“Effective April 1, 2000, nonunion of long bone fractures is considered to exist only when serial radiographs have confirmed that fracture healing has ceased for 3 or more months prior to starting treatment with the electrical osteogenic stimulator. Serial radiographs must include a minimum of 2 sets of radiographs, each including multiple views of the fracture site, separated by a minimum of 90 days.”

REFERENCES

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP 7.01.07 Electrical Bone Growth Stimulation of the Appendicular Skeleton

FEP 7.01.07 Electrical Bone Growth Stimulation of the Appendicular Skeleton

2007;36(7):354-357. PMID 17694182

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2012</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>September 2013</td>
<td>Update Policy</td>
<td>Clinical input reviewed; references 1 and 16 added. Policy statements unchanged, policy summary revised with no change to intent. Policy guidelines added for consistency with policy Number 1.01.05.</td>
</tr>
<tr>
<td>March 2014</td>
<td>Revise Policy</td>
<td>Policy updated with literature review; references 10, 18, & 19 added; delayed union added to medically necessary statement, stress fractures added to not medically necessary statement; compliance with non-weight bearing clarified.</td>
</tr>
<tr>
<td>March 2015</td>
<td>Update Policy</td>
<td>Policy updated with literature review; reference 18 added; policy statement unchanged</td>
</tr>
<tr>
<td>June 2017</td>
<td>Update Policy</td>
<td>Policy updated with literature review through February 23, 2017; references 1-2, 8, 12, 18-19, and 21-22 added. Policy statements unchanged.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.