FEP 2.04.102 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Effective Date: January 15, 2018

Related Policies:
2.04.105 Genetic Testing for Facioscapulohumeral Muscular Dystrophy
2.04.109 Genetic Testing for Epilepsy

Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Description
Whole exome sequencing (WES) sequences the portion of the genome that contains protein-coding DNA, while whole genome sequencing (WGS) sequences both coding and noncoding regions of the genome. WES and WGS have been proposed for use in patients presenting with disorders and anomalies that have not been explained by standard clinical workup. Potential candidates for WES and WGS include patients who present with a broad spectrum of suspected genetic conditions.

FDA REGULATORY STATUS
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Exome or genome sequencing tests as a clinical service are available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

POLICY STATEMENT
Whole exome sequencing may be considered medically necessary for the evaluation of unexplained congenital or neurodevelopmental disorder in children when ALL of the following criteria are met:

1. The patient has been evaluated by a clinician with expertise in clinical genetics and counseled about the potential risks of genetic testing.
2. There is potential for a change in management and clinical outcome for the individual being tested.
3. A genetic etiology is considered the most likely explanation for the phenotype despite previous genetic testing (eg, chromosomal microarray analysis and/or targeted single-gene testing), OR when previous genetic testing has failed to yield a diagnosis, and the affected individual is faced with invasive procedures or testing as the next diagnostic step (eg, muscle biopsy).

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
Whole exome sequencing is considered investigational for the diagnosis of genetic disorders in all other situations.

Whole genome sequencing is considered investigational for the diagnosis of genetic disorders.

Whole exome sequencing and whole genome sequencing are considered investigational for screening for genetic disorders.

POLICY GUIDELINES

This policy does not address the use of whole exome and whole genome sequencing for preimplantation genetic diagnosis or screening, prenatal (fetal) testing, or testing of cancer cells.

Trio Testing

Testing of the child and both parents can increase the chance of finding a definitive diagnosis.

Genetics Nomenclature Update

The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). The Society’s nomenclature is recommended by the Human Variome Project, the HUman Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “variant of uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.

Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td></td>
<td>Variant</td>
<td>Change in the DNA sequence</td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

GENETIC COUNSELING

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may...
reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods. This policy does not address the use of whole exome and whole genome sequencing for preimplantation genetic diagnosis or screening, prenatal (fetal) testing, or testing of cancer cells.

BENEFIT APPLICATION

Screening (other than the preventive services listed in the brochure) is not covered. Please see Section 6 General exclusions.

Benefits are available for specialized diagnostic genetic testing when it is medically necessary to diagnose and/or manage a patient’s existing medical condition. Benefits are not provided for genetic panels when some or all of the tests included in the panel are not covered, are experimental or investigational, or are not medically necessary.

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

RATIONALE

Summary of Evidence

For individuals who have multiple unexplained congenital anomalies or a neurodevelopmental disorder who receive WES, the evidence includes large case series and within-subject comparisons. Relevant outcomes are test accuracy and validity, functional outcomes, changes in reproductive decision making, and resource utilization. Patients who have multiple congenital anomalies or a developmental disorder with a suspected genetic etiology, but whose specific genetic alteration is unclear or unidentified by standard clinical workup, may be left without a clinical diagnosis of their disorder, despite a lengthy diagnostic workup. For a substantial proportion of these patients, WES may return a likely pathogenic variant. Several large and smaller series have reported diagnostic yields of WES ranging from 25% to 60%, depending on the individual's age, phenotype, and previous workup. One comparative study found a 44% increase in yield compared with standard testing strategies. Many of the studies have also reported changes in patient management, including medication changes, discontinuation of or additional testing, ending the diagnostic odyssey, and family planning. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have a suspected genetic disorder other than multiple congenital anomalies or a neurodevelopmental disorder who receive WES, the evidence includes small case series and prospective research studies. Relevant outcomes are test accuracy and validity, functional outcomes, changes in reproductive decision making, and resource utilization. There are increasing reports of use of WES to identify a molecular basis for disorders other than multiple congenital anomalies or neurodevelopmental disorders. The diagnostic yields in these studies range from as low as 3% to 60%. One concern with WES is the possibility of incidental findings. Some studies have reported on the use of a virtual gene panel with restricted analysis of disease-associated genes, and WES data allows reanalysis as new genes are linked to the patient phenotype. Overall, there are a limited number of patients who have been studied for any specific disorder, and clinical use of WES for these disorders is at an early stage. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with a suspected genetic disorder who receive WGS, the evidence includes case series. Relevant outcomes are test accuracy and validity, functional outcomes, changes in reproductive decision making, and resource utilization. WGS has increased coverage and diagnostic yield compared with WES, but the technology is limited by the amount of data generated and greater need for storage and analytic capability. Several authors have proposed that as WGS becomes feasible on a larger scale, it may in the future become the standard first-tier diagnostic test. At present, there is limited data on the clinical use of WGS. The evidence is insufficient to determine the effects of the technology on health outcomes.
SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

American College of Medical Genetics and Genomics
The American College of Medical Genetics and Genomics (ACMG) has recommended that diagnostic testing with whole exome sequencing (WES) and whole genome sequencing (WGS) should be considered in the clinical diagnostic assessment of a phenotypically affected individual when:

a. The phenotype or family history data strongly implicate a genetic etiology, but the phenotype does not correspond with a specific disorder for which a genetic test targeting a specific gene is available on a clinical basis.
b. A patient presents with a defined genetic disorder that demonstrates a high degree of genetic heterogeneity, making WES or WGS analysis of multiple genes simultaneously a more practical approach.
c. A patient presents with a likely genetic disorder but specific genetic tests available for that phenotype have failed to arrive at a diagnosis.
d. A fetus with a likely genetic disorder in which specific genetic tests, including targeted sequencing tests, available for that phenotype have failed to arrive at a diagnosis.

ACMG has recommended that for screening purposes:

WGS/WES may be considered in preconception carrier screening, using a strategy to focus on genetic variants known to be associated with significant phenotypes in homozygous or hemizygous progeny.

ACMG has also recommended that WGS and WES should not be used at this time as an approach to prenatal screening or as a first-tier approach for newborn screening.

In 2013, ACMG finalized its recommendations for reporting incidental findings in WGS and WES. ACMG determined that reporting some incidental findings would likely have medical benefit for the patients and families of patients undergoing clinical sequencing, recommending that, when a report is issued for clinically indicated exome and genome sequencing, a minimum list of conditions, genes, and variants should be routinely evaluated and reported to the ordering clinician.

American Academy of Neurology et al
In 2014, the American Academy of Neurology and American Association of Neuromuscular and Electrodiagnostic Medicine issued evidence-based guidelines on the diagnosis and treatment of limb-girdle and distal dystrophies, which made the following recommendations (see Table 5).

Table 5. Guidelines on Limb-Girdle Muscular Dystrophy

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>For patients with suspected muscular dystrophy, clinicians should use a clinical approach to guide genetic diagnosis based on the clinical phenotype, including the pattern of muscle involvement, inheritance pattern, age at onset, and associated manifestations (e.g., early contractures, cardiac or respiratory involvement).</td>
<td>B</td>
</tr>
<tr>
<td>In patients with suspected muscular dystrophy in whom initial clinically directed genetic testing does not provide a diagnosis, clinicians may obtain genetic consultation or perform parallel sequencing of targeted exomes, whole-exome sequencing, whole-genome screening, or next-generation sequencing to identify the genetic abnormality.</td>
<td>C</td>
</tr>
<tr>
<td>Management of cardiac complications</td>
<td></td>
</tr>
<tr>
<td>Clinicians should refer newly diagnosed patients with (1) limb-girdle muscular dystrophy (LGMD)1A, LGMD1B, LGMD1D, LGMD1E, LGMD2C–K, LGMD2M–P, … or (2) muscular dystrophy without a specific genetic diagnosis for cardiology evaluation, including electrocardiogram (ECG) and structural evaluation.</td>
<td>B</td>
</tr>
</tbody>
</table>
FEP Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Recommendation

- (echocardiography or cardiac magnetic resonance imaging [MRI]), even if they are asymptomatic from a cardiac standpoint, to guide appropriate management.
- If ECG or structural cardiac evaluation (e.g., echocardiography) has abnormal results, or if the patient has episodes of syncope, near-syncope, or palpitations, clinicians should order rhythm evaluation (e.g., Holter monitor or event monitor) to guide appropriate management.
- Clinicians should refer muscular dystrophy patients with palpitations, symptomatic or asymptomatic tachycardia or arrhythmias, or signs and symptoms of cardiac failure for cardiology evaluation.
- It is not obligatory for clinicians to refer patients with LGMD2A, LGMD2B, and LGMD2L for cardiac evaluation unless they develop overt cardiac signs or symptoms.

Management of pulmonary complications

- Clinicians should order pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright and, if normal, supine positions) or refer for pulmonary evaluation (to identify and treat respiratory insufficiency) in muscular dystrophy patients at the time of diagnosis, or if they develop pulmonary symptoms later in their course.
- In patients with a known high risk of respiratory failure (e.g., those with LGMD2I ...), clinicians should obtain periodic pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright position and, if normal, in the supine position) or evaluation by a pulmonologist to identify and treat respiratory insufficiency.
- It is not obligatory for clinicians to refer patients with LGMD2B and LGMD2L for pulmonary evaluation unless they are symptomatic.
- Clinicians should refer muscular dystrophy patients with excessive daytime somnolence, nonrestorative sleep (e.g., frequent nocturnal arousals, morning headaches, excessive daytime fatigue), or respiratory insufficiency based on pulmonary function tests for pulmonary or sleep medicine consultation for consideration of noninvasive ventilation to improve quality of life.

LOE: level of evidence; LGMD: limb-girdle muscular dystrophy ECG: electrocardiogram.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

REFERENCES

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
FEP Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2013</td>
<td>New Policy</td>
<td>Policy updated with literature review.</td>
</tr>
<tr>
<td>December 2014</td>
<td>Update Policy</td>
<td>Policy updated with literature review. References 2, 4, 5, and 8-13 added. Whole genome sequencing added to policy statement; whole genome sequencing considered investigational.</td>
</tr>
<tr>
<td>March 2017</td>
<td>Update Policy</td>
<td>Policy updated with literature review through August 22, 2016; references 9, 11, 14, 16-18, and 20-22 added. Rationale revised. Whole exome sequencing considered medically necessary for children with multiple congenital anomalies or a neurodevelopmental disorder. All other uses of whole exome and whole genome sequencing are considered investigational. Policy statement added that whole exome and whole genome sequencing are considered investigational for screening.</td>
</tr>
<tr>
<td>December 2017</td>
<td>Update Policy</td>
<td>Policy updated with literature search through August 23, 2017; references 6-8, 19, 24-25, 27, and 30 added. Policy statements unchanged.</td>
</tr>
</tbody>
</table>