7.01.113 Bioengineered Skin and Soft Tissue Substitutes

Bioengineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), nonhuman tissue (xenographic), synthetic materials, or a composite of these materials. Bioengineered skin and soft tissue substitutes are being evaluated for a variety of conditions, including breast reconstruction and healing lower-extremity ulcers and severe burns. Acellular dermal matrix (ADM) products are also being evaluated for soft tissue repair.

FDA REGULATORY STATUS

A large number of artificial skin products are commercially available or in development. The following summary of commercially available skin substitutes describes those products that have substantial relevant evidence on efficacy. Information on other artificial skin and soft tissue substitutes available in the United States may be found in a 2012 Technology Assessment from the Agency for Healthcare Research and Quality.

Acellular Dermal Matrix Products

Allograft acellular dermal matrix (ADM) products derived from donated human skin tissue are supplied by tissue banks compliant with standards of the American Association of Tissue Banks (AATB) and U.S. Food and Drug Administration (FDA) guidelines. The processing removes the cellular components (i.e., epidermis, all viable dermal cells) that can lead to rejection and infection. ADM products from human skin tissue are regarded as minimally processed and not significantly changed in structure from the natural material; FDA classifies ADM products as banked human tissue and therefore, not requiring FDA approval.

- AlloDerm® (LifeCell Corp.) is an ADM (allograft) tissue-replacement product created from native human skin and processed so that the basement membrane and cellular matrix remain intact. Originally, AlloDerm® required refrigeration and rehydration before use. It is currently available in a ready-to-use product stored at room temperature. An injectable micronized form of AlloDerm® (Cymetra) is available.
- AlloMax™ Surgical Graft (Bard Davol) is an acellular non-cross-linked human dermis allograft. (AlloMax was previously marketed as NeoForm™.)
- FlexHD® (Ethicon) is an acellular hydrated dermis derived from donated human allograft skin. The Musculoskeletal Transplant Foundation acquires and processes the tissue.
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

- **DermACELL™ (LifeNet Health)** is an allogeneic ADM processed with proprietary technologies MATRACELL® and PRESERVON®.

- **DermaMatrix™ (Synthes)** is a freeze-dried ADM derived from donated human skin tissue. DermaMatrix Acellular Dermis is processed by the Musculoskeletal Transplant Foundation.

- **DermaPure™ (Tissue Regenex Wound Care)** is a single-layer decellularized human dermal allograft for the treatment of acute and chronic wounds.

- **Graftjacket® Regenerative Tissue Matrix** (also called Graftjacket Skin Substitute: KCl) is an acellular regenerative tissue matrix that has been processed from human skin supplied from U.S. tissue banks. The allograft is minimally processed to remove the epidermal and dermal cells, while preserving dermal structure. Graftjacket Xpress® is an injectable product. FDA product codes: FTM, OXF.

Xenogenic Products

Keramatrix® (Keraplast Research) is an open-cell foam comprised of freeze-dried keratin that is derived from acellular animal protein. In 2009, it was cleared for marketing by FDA through the 510(k) marketing process under the name of Keratec. The wound dressings are indicated in the management of the following types of dry, light, and moderately exuding partial and full-thickness wounds: pressure (stage I-IV) and venous stasis ulcers, ulcers caused by mixed vascular etiologies, diabetic ulcers, donor sites, and grafts.

Helicoll (Encol) is an acellular collagen matrix derived from bovine dermis. In 2004, it was cleared by FDA through the 510(k) process for topical wound management that includes partial and full-thickness wounds, pressure ulcers, venous ulcers, chronic vascular ulcers, diabetic ulcers, trauma wounds (eg, abrasions, lacerations, second-degree burns, skin tears), and surgical wounds including donor sites/grafts.

Permacol™ (Covidien) is xenogeneic and composed of cross-linked porcine dermal collagen. Cross-linking improves the tensile strength and long-term durability, but decreases pliability.

PriMatrix™ (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis. It was cleared for marketing by FDA through the 510(k) process for partial- and full-thickness wounds; diabetic, pressure, and venous stasis ulcers; surgical wounds; and tunneling, draining, and traumatic wounds. FDA product code: KGN.

SurgiMend® PRS (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis. This product is currently undergoing an FDA-regulated investigational device exemption trial for breast reconstruction.

Strattice™ Reconstructive Tissue Matrix (LifeCell Corp.) is a xenogenic non-cross-linked porcine-derived ADM. There are pliable and firm versions, which are stored at room temperature and come fully hydrated.

Oasis™ Wound Matrix (Cook Biotech) is a xenogeneic collagen scaffold derived from porcine small intestinal mucosa. In 2000, it was cleared for marketing by FDA through the 510(k) process for the management of partial- and full-thickness wounds, including pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled undermined wounds, surgical wounds, trauma wounds, and draining wounds. FDA Product code: KGN.

Amniotic Membrane Products

Amniotic membrane consists of 2 conjoined layers, the amnion and chorion, and forms the innermost lining of the amniotic sac or placenta. It is harvested immediately after birth, cleaned, sterilized, and either fresh frozen or dehydrated. Human amniotic membrane is considered minimally processed and not significantly changed in structure from the natural material; FDA classifies it as banked human tissue and, therefore, it does not require FDA approval. Amniotic membrane sheet products include Affinity™ (NuTech Medical), AlloWrap™ (AlloSource), AmnioBand and GUARDIAN (Musculoskeletal Transplant Foundation), AmnioGraft® (Bio-Tissue), BioDFence™ and BioDDryFlex® (BioD), Biovance® (Alliqua Biomedical), Dermavest™ and Plurivest™ (Aedicell), EpiFix® (dehydrated- MiMedx), Neox®1000
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

(Amniox® Medical), Grafix® Prime and Grafix® Core (cryopreserved; Osiris), NuShield™ (NuTech Medical), and Revitalon™ (previously known as AmnioClear; Medline Industries). Injectable amniotic membrane products, such as AmnioFix® (MiMedix), are discussed in evidence review 7.01.149.

Living Cell Therapy

Apligraf® (Organogenesis) is a bilayered living cell therapy composed of an epidermal layer of living human keratinocytes and a dermal layer of living human fibroblasts. Apligraf® is supplied as needed, in 1 size, with a shelf-life of 10 days. In 1998, it was approved by FDA for use in conjunction with compression therapy for the treatment of noninfected, partial- and full-thickness skin ulcers due to venous insufficiency and in 2001 for full-thickness neuropathic lower-extremity ulcers nonresponsive to standard wound therapy. FDA product code: FTM. Dermagraft® (Organogenesis) is composed of cryopreserved human-derived fibroblasts and collagen derived from newborn human foreskin and cultured on a bioabsorbable polyglyactin mesh scaffold. Dermagraft has been approved by FDA for repair of diabetic foot ulcers. FDA product code: PFC.

TheraSkin® (Soluble Systems) is a cryopreserved human skin allograft composed of living fibroblasts and keratinocytes and an extracellular matrix in epidermal and dermal layers. TheraSkin® is derived from human skin allograft supplied by tissue banks compliant with the AATB and FDA guidelines. It is considered a minimally processed human cell, tissue, and cellular- and tissue-based product by FDA.

Epicel® (Genzyme Biosurgery) is a cultured epithelial autograft and is FDA-approved under a humanitarian device exemption (HDE) for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. It may be used in conjunction with split-thickness autografts or alone in patients for whom split-thickness autografts may not be an option due to the severity and extent of their burns. FDA product code: OCE.

OrCel™ (Forticell Bioscience; formerly Composite Cultured Skin) is an absorbable allogeneic bilayered cellular matrix, made of bovine collagen, in which human dermal cells have been cultured. It was approved by FDA premarket approval for healing donor site wounds in burn victims and under an HDE for use in patients with recessive dystrophic epidermolysis bullosa undergoing hand reconstruction surgery to close and heal wounds created by the surgery, including those at donor sites. FDA product code: ODS.

Biosynthetic Products

Biobrane®/Biobrane-L (Smith and Nephew) is a biosynthetic wound dressing constructed of a silicon film with a nylon fabric partially imbedded into the film. The fabric creates a complex 3-dimensional structure of trifilament thread, which chemically binds collagen. Blood/sera clot in the nylon matrix, adhering the dressing to the wound until epithelialization occurs. FDA product code: FRO.

Integra® Dermal Regeneration Template (marketed as Omnigraft Dermal Regeneration Matrix; Integra LifeSciences) is a bovine, collagen/glycosaminoglycan dermal replacement covered by a silicone temporary epidermal substitute. It was approved by FDA for use in postexcisional treatment of life-threatening full-thickness or deep partial-thickness thermal injury where sufficient autograft is not available at the time of excision or not desirable because of the physiologic condition of the patient. Integra™ Matrix Wound Dressing and Integra™ meshed Bilayer Wound Matrix are substantially equivalent skin substitutes approved by FDA through the 510(k) process for other indications. Integra® Bilayer Wound Matrix (Integra LifeSciences) is designed to be used in conjunction with negative pressure wound therapy. The meshed bilayer provides a flexible wound covering and allows drainage of wound exudate. FDA product code: MDD.

TransCyte™ (Advanced Tissue Sciences) consists of human dermal fibroblasts grown on nylon mesh, combined with a synthetic epidermal layer and was approved by FDA in 1997. TransCyte is intended as a temporary covering over burns until autografting is possible. It can also be used as a temporary covering for some burn wounds that heal without autografting.
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

Synthetic Products

Suprathel® (PolyMedics Innovations) is a synthetic copolymer membrane fabricated from a tripolymer of polylactide, trimethylene carbonate, and s-caprolactone. It is used to provide temporary coverage of superficial dermal burns and wounds. Suprathel® is covered with gauze and a dressing that is left in place until the wound has healed.

POLICY STATEMENT

Breast reconstructive surgery using allogeneic acellular dermal matrix products* (including each of the following: AlloDerm®, AlloMax™, AlloMend®, DermaMatrix™, FlexHD®, Graftjacket®; may be considered medically necessary,

- when there is insufficient tissue expander or implant coverage by the pectoralis major muscle and additional coverage is required,
- when there is viable but compromised or thin postmastectomy skin flaps that are at risk of dehiscence or necrosis, or
- the inframammary fold and lateral mammary folds have been undermined during mastectomy and reestablishment of these landmarks is needed.

Treatment of chronic, noninfected, full-thickness diabetic lower-extremity ulcers using the following tissue-engineered skin substitutes may be considered medically necessary:

- Apligraf®**
- Dermagraft®**
- Integra® Dermal Regeneration Template
- Amniotic Membrane Graft* (including each of the following: Biovance®, Epifix®, Grafix™)

Treatment of chronic, noninfected, partial- or full-thickness lower-extremity skin ulcers due to venous insufficiency, which have not adequately responded following a 1-month period of conventional ulcer therapy, using the following tissue-engineered skin substitutes may be considered medically necessary:

- Apligraf®**
- Oasis™ Wound Matrix***

Treatment of dystrophic epidermolysis bullosa using the following tissue-engineered skin substitutes may be considered medically necessary:

- OrCel™ (for the treatment of mitten-hand deformity when standard wound therapy has failed and when provided in accordance with the humanitarian device exemption (HDE) specifications of the U.S. Food and Drug Administration [FDA])****

Treatment of second- and third-degree burns using the following tissue-engineered skin substitutes may be considered medically necessary:

- Epicel® (for the treatment of deep dermal or full-thickness burns comprising a total body surface area ≥30% when provided in accordance with the HDE specifications of the FDA)****
- Integra Dermal Regeneration Template™**

* Banked human tissue.
** FDA premarket approval.
*** FDA 510(k) cleared.
**** FDA-approved under an HDE.
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

All other uses of the bioengineered skin and soft tissue substitutes listed above are considered **investigational**.

All other skin and soft tissue substitutes not listed above are considered **investigational**, including, but not limited to:

- ACell® UBM Hyd Hydrated/Lyophilized Wound Dressing
- Affinity™
- AlloPatch HD™
- AlloSkin™
- AlloSkin™ RT
- AlloWrap™
- Amnioband®/Guardian
- AMNIOEXCEL®
- AmnioFix®
- AMNIOMATRIX®
- Aongen™ Collagen Matrix
- Architect® ECM, PX, FX
- ArthroFlex™ (Flex Graft)
- Atlas Wound Matrix
- Avagen Wound Dressing
- AxoGuard® Nerve Protector (AxoGen)
- BioDDryFlex®
- BioDfence/BioDfactor
- CellerateRX® (CRXa™)
- Clarix®
- Clarix® Flo
- CollaCare® CollaCare® Dental
- Collagen Wound Dressing (Oasis Research)
- CollaGUARD®
- CollaMend™
- CollaWound™
- Collexa®
- Collieva®
- Conexa™
- Coreleader Colla-Pad
- CorMatrix®
- Cymetra®
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

- Dermadap™ Wound Dressing
- DermaPure™
- DermaSpan™
- Dermavest™ — DressSkin
- Durepair Regeneration Matrix®
- Endoform Dermal Template™
- ENDURAGen™
- Excellagen
- ExpressGraft™
- E-Z Derm™
- FlexiGraft®
- FortaDerm™/PuraPly™
- GammaGraft
- Graftjacket® Xpress, injectable
- GUARDIAN
- Hyalomatrix®
- Hyalomatrix® PA
- hMatrix®
- Integra™ Flowable Wound Matrix
- Integra™ Bilayer Wound Matrix
- MariGen™/Kerecis™ Omega3™
- MatriDerm®
- MatriStem® Burn Matrix
- MatriStem® Micromatrix
- MatriStem® Wound Matrix — Matrix HD™
- Mediskin®
- MemoDerm™
- NeoForm™
- Neox® Flo
- Neox® Cord
- Neox® Wound Allograft
- NuCel
- NuShield™
- Oasis® Burn Matrix
- Oasis® Wound Matrix
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

- Oasis® Ultra
- Pelvico®/PelviSoft®
- Permacol™
- Plurivest™
- PriMatrix™
- PriMatrix™ Dermal Repair Scaffold
- Puros® Dermis □ RegenePro™
- Repliform®
- Repriza™
- Revitalon™
- StrataGraft®
- Strattice™ (xenograft)
- Suprathel®
- SurgiMend®
- Talymed®
- TenoGlide™
- TenSIX™ Acellular Dermal Matrix □ TissueMend
- TheraForm™ Standard/Sheet
- TheraSkin®
- Unite™ Biomatrix
- Veritas® Collagen Matrix
- XCM Biologic® Tissue Matrix
- XenMatrix™ AB

BENEFIT APPLICATION

FDA approved devices under Premarket Approval (PMA) cannot be denied on the basis of experimental or investigational.

RATIONALE

Summary of Evidence

Surgical Repair

For individuals who have conditions requiring surgical repair who receive bioengineered soft-tissue substitutes, the evidence includes randomized controlled trials (RCTs). Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Overall, there are a limited number of soft-tissue substitutes, and the evidence is limited for any specific product. Following is a description of the evidence for specific indications.
Breast Reconstruction

Results from an RCT and systematic reviews in unselected populations of breast reconstruction patients found no benefit of acellular dermal matrix (ADM) allograft compared to standard procedures for breast reconstruction. Reconstructions with ADM have been reported to have higher complication rates than reconstructions without ADM. However, in cases where there is limited breast tissue for coverage, including but not limited to when the use of ADM allows a single-stage reconstruction, the available Fistula Repair

One RCT was identified that used an ADM allograft not been cleared for marketing in the United States. The evidence is insufficient to determine the effects of the technology on health outcomes.

Surgical Repair of Hernias or Parastomal Reinforcement

Several comparative studies including RCTs show no difference in outcome between tissue-engineered skin substitutes and either standard synthetic mesh or no reinforcement. The evidence is sufficient to determine qualitatively that the technology is unlikely to improve the net health outcome.

Oral Surgery

One RCT and 1 nonrandomized cohort were identified on the use of an ADM allograft (AlloDerm) for root coverage therapy and oral cavity reconstruction following surgical removal of tumors. The studies show that although use of an ADM allograft (AlloDerm) may result in less scar contracture, important health outcomes were not improved over the standard of care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Laryngoplasty

The effect of micronized ADM (eg, Cymetra) in laryngoplasty has been reported in case series. Longer term controlled study following a larger number of patients is needed to determine the durability of this procedure and to evaluate the safety of repeat injections. The evidence is insufficient to determine the effects of the technology on health outcomes.

Tympanoplasty

AlloDerm ADM has been compared with native tissue grafts in a non-RCT. The trial found no significant difference in the success rate of the graft (88% for AlloDerm, 89% for fascia grafts, 96.7% for cartilage plus fascia), and no significant difference in hearing across groups at follow-up. Longer term controlled study following a larger number of patients is needed to determine the durability of this procedure. The evidence is insufficient to determine the effects of the technology on health outcomes.

Chronic Wounds

For individuals who have chronic wounds who receive bioengineered skin substitutes, the evidence includes RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbidity events, and quality of life. Overall, the number of bioengineered skin substitutes is large, but the evidence is limited for any specific product. Relatively few products have been compared with the standard of care, and only for some indications. Comparative trials have been identified for use in lower-extremity ulcers (diabetic or venous) and for treatment of burns. In these trials, the healing rates improved roughly 15% to 20%. Several other products/indications are supported by a U.S. Food and Drug Administration (FDA) humanitarian device exemption. Following is a description of the evidence for specific indications.

Diabetic Lower-Extremity Ulcers

RCTs have demonstrated the efficacy of Apligraf, Dermagraft (living cell therapy), and Integra Dermal Regeneration Template (biosynthetic) over the standard of care. Several amniotic membrane products have also been shown to improve healing. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health noncomparative studies may be considered sufficient to permit conclusions about health outcomes that may inform patient decision
making about reconstruction options. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

Interpositional Graft After Parotidectomy

Two lower quality controlled trials were identified that demonstrated a reduction in the incidence of Frey syndrome with use of an interpositional ADM allograft. Neither study described the method of group assignment or blinding of patients and assessors. The evidence is insufficient to determine the effects of the technology on health outcomes.

Tendon Repair

One small RCT was identified that found improved outcomes with Graftjacket ADM allograft for rotator cuff repair. Although these results are promising, additional study with a larger number of subjects is needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

- Additional study with a larger number of subjects is needed to compare the effect of human ADM products and xenogenic skin substitutes (eg, Oasis Wound Matrix, PriMatrix) to the standard of care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Lower-Extremity Ulcers due to Venous Insufficiency

- RCTs have demonstrated the efficacy of Apligraf living cell therapy and xenogenic Oasis Wound Matrix over the standard of care. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

In a moderately large RCT, Dermagraft was not shown to be more effective than controls for the primary or secondary end points in the entire population and was only slightly more effective than controls (an 8%-15% increase in healing) in subgroups of patients with ulcer durations of 12 months or less or size of 10 cm or less. The evidence is insufficient to determine the effects of the technology on health outcomes.

- In a randomized comparison of EpiFix amniotic membrane to standard of care that used a primary outcome measure of 40% wound healing, there was no difference between 1 or 2 applications of EpiFix and no difference between the experimental and controls groups in complete wound closure at 4 weeks. Additional study is needed. Additional study with a larger number of subjects is also needed to evaluate the effect of the xenogenic PriMatrix skin substitute versus the current standard of care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Dystrophic Epidermolysis Bullosa

OrCel (living cell therapy) has received FDA approval under a humanitarian device exemption. Although case series studies have shown good outcomes in this condition, because this is a rare disorder, it is unlikely that RCTs will be undertaken. The evidence is insufficient to determine the effects of the technology on health outcomes.

Burns, Skin Grafts, and Traumatic Wounds

For individuals who have burns, skin grafts, or traumatic wounds who receive bioengineered soft-tissue substitutes, the evidence includes RCTs. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Overall, there are few soft-tissue substitutes, and the evidence is limited for each specific product. Following is a description of the evidence for specific indications.

Ocular Burns

An RCT of amniotic membrane transplantation did not demonstrate improved outcomes compared to medical therapy. The evidence is insufficient to determine the effects of the technology on health outcomes.
Nonocular Burns

Epicel (living cell therapy) has received FDA-approval under a humanitarian device exemption for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. A case series showed mean permanent coverage of 26% of total BSA. The evidence is insufficient to determine the effects of the technology on health outcomes.

Comparative studies have demonstrated improved outcomes for biosynthetic skin substitute Integra Dermal Regeneration Template for the treatment of burns. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

Skin Grafts

Keramatrix (xenogenic skin substitute) was compared with standard of care in a small RCT for healing of skin graft donor sites. Overall results are equivocal. Study in a larger number of patients/wounds is needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

American Society of Plastic Surgeons and Wound Healing Society

A literature review for the 2013 guidelines from the American Society of Plastic Surgeons (ASPS) found that use of ADM, although increasingly common in postmastectomy expander/implant breast reconstruction, can result in increased risk of complications in the presence of certain risk factors. ASPS notes that cellular dermal matrix is currently used to increase soft tissue coverage, support the implant pocket, improve contour, and reduce pain with expansion. However, evidence to support these improved surgical outcomes are limited. Some evidence suggested that use of ADM is associated with increased postoperative complications, specifically related to infection and seroma. Overall, ASPS found that evidence on ADM products in postmastectomy expander/implant breast reconstruction was varied and conflicting, and gave a grade C recommendation based on level III evidence that surgeons should evaluate each clinical case individually and objectively determine the use of ADM.

In 2006, ASPS endorsed guidelines from the Wound Healing Society (WHS) on the treatment of arterial insufficiency ulcers. The guidelines stated that extracellular matrix replacement therapy appears to be promising for mixed ulcers and may have a role as an adjuvant agent in arterial ulcers, but further study is required (level IIIC): “Despite the existence of animal studies, case series, and a small number of random control trials to support biomaterial use for pressure ulcers, diabetic ulcers, and venous ulcers; there are no studies specifically on arterial ulcers. Therefore, studies in arterial ulcers must be conducted before the recommendation can be made.” ASPS also endorsed WHS guidelines on the treatment of venous ulcers in 2006. The guidelines stated that various skin substitutes or biologically active dressings are emerging that provide temporary wound closure and serve as a source of stimuli (eg, growth factors) for healing of venous ulcers. Guideline 7b.1 stated that there is evidence that a bilayered artificial skin (biologically active dressing), used in conjunction with compression bandaging, increases the chance of healing a venous ulcer compared with compression and a simple dressing (level I).

ASPS also endorsed WHS guidelines on the treatment of diabetic ulcers in 2006. The guidelines stated that healthy living skin cells assist in healing diabetic foot ulcers by releasing therapeutic amounts of growth factors, cytokines, and other proteins that stimulate the wound bed. Guideline 7.2.2 stated that living skin equivalents may be of benefit in healing diabetic foot ulcers (level I).

The 2007 ASPS guidelines on chronic wounds of the lower extremity stated that maintaining a moist environment, while simultaneously removing soluble factors detrimental to wound healing, might logically provide optimal conditions for wound healing. Classic dressings include gauze, foam, hydrocolloid, and hydrogels. Fluid-handling mechanisms include absorption, gelling, retention, and vapor transmission.
7.01.113 Bioengineered Skin and Soft Tissue Substitutes

Bioactive dressings include topical antimicrobials, bioengineered composite skin equivalent, bilaminar dermal regeneration template, and recombinant human growth factor.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

Centers for Medicare and Medicaid Services (CMS) issued the following national coverage determination: Porcine (pig) skin dressings are covered, if reasonable and necessary for the individual patient as an occlusive dressing for burns, donor sites of a homograft, and decubiti and other ulcers.

Since 2014, CMS has no longer distinguished between different skin substitutes and classifies them as either high cost or low cost. CMS packages skin substitutes of the same class into the associated surgical procedures for hospital outpatient departments and ambulatory surgical centers. A separate payment might be made if the item is furnished on a different date of service as the primary service.

REFERENCES

Bioengineered Skin and Soft Tissue Substitutes

7.01.113 Bioengineered Skin and Soft Tissue Substitutes

7.01.113 Bioengineered Skin and Soft Tissue Substitutes

7.01.113 Bioengineered Skin and Soft Tissue Substitutes

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2011</td>
<td>New Policy</td>
<td>Policy updated and scope expanded; policy statements added for other indications; title changed to “Bio-Engineered Skin and Soft Tissue Substitutes”</td>
</tr>
<tr>
<td>March 2013</td>
<td>Update Policy</td>
<td>Policy updated with literature search adding references 1, 13-15, 24, 36, 40, 48, 59, 66, and 68. First policy statement expanded to include other acellular dermal matrix products.</td>
</tr>
<tr>
<td>March 2014</td>
<td>Update Policy</td>
<td>Policy updated with literature review through December 3, 2014; references 2, 17, 27, 37, 41, 42, and 44 added; EpiFix considered medically necessary for treatment of diabetic foot ulcers was added to the policy statement.</td>
</tr>
<tr>
<td>March 2015</td>
<td>Update Policy</td>
<td>Policy updated with literature review through October 30, 2015; references added and renumbered. Clinical input reviewed. Integra Dermal Regeneration Template, Biovance and Grafix were added as medically necessary for the treatment of diabetic foot ulcers. TransCyte removed from the medically necessary statement; it is no longer commercially available. HCPCS codes updated. Acellular dermal matrix products used in breast reconstruction clarified; investigational list updated with new products and name changes; wound dressing products removed from list.</td>
</tr>
</tbody>
</table>

Signature on File

Deborah M. Smith, MD, MPH